09December2019

Nano-Micro Letters

Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells

Majid Raissan Al-bahrani 1,2 , Waqar Ahmad1, Hadja Fatima Mehnane3, Ying

Chen1, Ze Cheng4, Yihua Gao1,*

Abstract
icon-htmlFull Text Html
icon-pdf-smPDF w/ Links
icon-citExport Citation
Figures
+Show more

Nano-Micro Letters, , Volume 7, Issue 3, pp 298-306

First online: 17 May 2015 (Article)

DOI: 10.1007/s40820-015-0043-7

*Corresponding author. E-mail: gaoyihua@hust.edu.cn. Tel.: +86 15807135274

 

Abstract

 


Schematic flowchart showing the fabrication process for RGO/MWCNTs/NiO composite

 

We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide (RGO/MWCNTs/NiO) nanocomposite as the counter electrode (CE) in dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by blade doctor method. Power conversion efficiency (PCE) of 8.13 % was achieved for this DSSCs device, which is higher than that of DSSCs devices using NiO, RGO and RGO/NiO-CE (PCE = 2.71 %, PCE = 6.77 % and PCE = 7.63 %). Also, the fill factor (FF) of the DSSCs devices using the RGO/MWCNTs/NiO-CE was better than that of other CEs. The electron transfer measurement of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that RGO/MWCNTs/NiO film could provide fast electron-transfer between the CE and the electrolyte, and high electrocatalytic activity for the reduction of triiodide in a CE based on RGO/MWCNTs/NiO in a DSSC.

 

Keywords

Graphene oxide; Carbon nanotubes; Nickel oxide; Counter electrode; Dye-sensitized solar cells

 

Full Text Html

 

1 Introduction

 

In recent, the demand for alternative clean and sustainable energy technologies increases worldwide because of the pollution caused by fossil fuels and their advanced exhaustion. Dye-sensitized solar cells (DSSCs) which can convert the sun energy into electricity is believed to be a promising energy conversion technology. It becomes essential and very important to improve the DSSCs performance such as low production cost, low environmental impact during fabrication, and high energy conversion efficiency [1]. In the case of the original Grätzel design, the DSSC has three primary parts: photoanode, liquid electrolytes and platinum (Pt) deposited on another transparent conducting oxide (TCO) substrate [1-2]. The photoanode which determines the device efficiency is usually fabricated using TiO2 due to its large ratio of surface area to volume for dye materials [3-6], and the issues related to the counter electrode (CE) must also be addressed. As known, the CE in DSSCs can quickly transport electrons from the electrode substrate to the electrolyte and effectively catalyze the iodide-triiodide (I/I3) redox reaction in the electrolyte. However, for long term stability and cost-effective construction of the DSSCs, Pt CE suffer from its high price, rarity and susceptibility to corrosion by iodide electrolyte. Using alternative materials of Pt in CE is expected to reduce fabrication cost of DSSCs. Nanocarbon, carbon black, hard carbon spherules, polymer, polymer/Pt and polymer/carbon have been introduced as catalysts for DSSCs [7-17]. Carbonaceous materials are highly important materials in either their pristine or their composite forms due to their low cost and abundance [18-23]. Single walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), multi-walled carbon nanotubes/graphene (MWCNTs/G), MWCNTs/polymers and MWCNTs/Pt-CE in DSSCs have been considered as ideal alternative sources to Pt owing to their good properties such as high conductivity, large specific surface area and chemical stability [24-29]. Recently, Wang et al. prepared a nickel oxide (NiO)-coated fluorine-doped tin oxide (FTO) glass CE in DSSCs, in which NiO was taken as a catalytic role towards I/I3 redox couple [30]. The conductive behaviors of metal oxide with CNTs (or graphene) as the CE have been investigated and increase of the power conversion efficiencies was observed [31, 32]. Yeh et al. demonstrated that reduced graphene oxide (RGO) with good electrocatalytic ability for reducing I3 is a promising catalyst for the CE of DSSCs [33]. However, hybrid materials such as graphene/cobalt sulfide [34] and RGO/Cu2S [35] have been reported to show improved catalytic activity and conductivity relative to single-component materials which enhanced efficiency in DSSCs. A RGO/MWCNTs/NiO nanocomposite would be an excellent candidate as counter electrode material for DSSCs.

In this work, we used the RGO/MWCNTs/NiO nanocomposite as a cathode material in DSSCs for catalyzing the I/I3 redox reaction and transporting electrons from the FTO to the electrolyte. The combination of high electrocatalytic of NiO and outstanding conductivity of graphene and MWCNTs showed superior performance. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were confirmed that the RGO/MWCNTs/NiO CE has electrocatalytic ability to reduce I3, and the charge transfer resistance (Rct) was lower. Due to the high catalytic activity and the superior electrical conductivity, the RGO/MWCNTs/NiO-CE also showed excellent photovoltaic performance.

 

2 Experimental

 

2.1 Chemicals and Materials

 

In this work, the materials and solvents were purchased from Sinopharm Chemical Reagent Co. MWCNTs, graphene oxide (GO) were bought from Beijing BoyuGaoke New Material Technology Co. TiO2 paste and ruthenium 535-bis-TBA (N719) were purchased from Solaronix. The electrolyte was produced by a solution of 0.05 M I2, 0.1 M LiI (Adamas-beta), 0.6 M 1-methyl-3-butylimidazolium iodide (TCl), 0.1 mguanidiniumthiocyanate (TCl), and 0.5 M 4-tert-butylpyridine (TCl) mixed in 3-methoxypropionitrile solution (Alfa Aesar). Millipore water (18.25 MΩ cm) was used in the whole process. FTO glass with a sheet resistance of 8 Ω/square and a thickness of 2.2 mm, supplied by Nippon Sheet Glass, was used for both electrodes.

 

2.2 Preparation of Counter Electrode

 

CE for the DSSCs was prepared on coated FTO glass substrate. Firstly, glass substrates coated FTO were washed with detergent solution and rinsed with deionized (DI) water, and then cleaned in an ultrasonic bath for 15 min in the end rinsed with ethanol and dried in air. Before that, the RGO/MWCNTs/NiO composite was prepared in the following steps as illustrated in Fig. 1. MWCNTs (0.02 g) were refluxed with HNO3 at 80 °C for 6 h and GO (80 mL) suspension with a concentration of 1 mg mL-1 under strong stirring. At room temperature, 50 mL aqueous solution containing 0.4362 g nickel (II) nitrate hexahydrate (Ni(NO3)2•6H2O) and 1.5 g urea were slowly dropped into the GO and CNTs suspension with stirring for 30 min. Then, the mixture was refluxed at 100 °Cfor 12 h in an oil bath. The reaction product was filtered and washed with DI water and ethanol successively several times. Finally, it was dried at 60 °C for 24 h and then heat treated at 250 °Cfor 2 h in air. To prepare the RGO/MWCNTs/NiO paste, 1 g RGO/MWCNTs/NiO powder was mixed with 0.5 g ethyl cellulose in 8 mL ethanol. Then 0.2 mL acetic acid and 3 g terpineol were slowly added with continuous mixing for 36 h. To prepare the RGO/MWCNTs/NiO-CE, the RGO/MWCNTs/NiO paste was coated on the FTO-glass substrate by the doctor-blade method. Then the formed films were annealed at 400 °C for 30 min using a muffle furnace. For comparison, RGO and RGO/NiO were also prepared under the same synthesis conditions.

Schematic flowchart showing the fabrication process for RGO/MWCNTs/NiO composite.

Schematic flowchart showing the fabrication process for RGO/MWCNTs/NiO composite.

 

2.3 DSSC Device Fabrication

 

For synthesis of the photoanode, TiO2 layer-by-layer hierarchical nanosheets (TiO2 LHNs) and their paste were fabricated according to the previously reported method [36, 37]. Briefly, the TiO2 LHNs powder (0.9 g) was added to the solution containing ethanol/DI water (4:1, volume) and acetylacetone (0.16 mL) for a 3 h stir. After that, TiO2 paste was applied on pre-treated FTO glass by the doctor-blade method and sintered at 500 °C for 30 min to achieve crystallization in a muffle furnace. The TiO2 electrode was kept in a dye sensitization (0.5 mM in a mixture of 1:1 acetonitrile/tert-butanol) for at least 12 h at 60 °C in a sealed beaker, then rinsed with ethanol and dried under nitrogen flow. The TiO2 photoanode was assembled with the CE manufactured as in Fig. 2a. The electrolyte solution was inserted through holes drilled in the CE, and the holes were sealed with hot-melt film and a cover glass finally.

a Schematic illustration of a DSSCs device using RGO/MWCNT/NiO CE. b The current-voltage characteristic curves of DSSC fabricated with different CE.

a Schematic illustration of a DSSCs device using RGO/MWCNT/NiO CE. b The current-voltage characteristic curves of DSSC fabricated with different CE.

 

2.4 Measurements of DSSCs

 

The morphologies and structures of the samples were characterized using high-resolution field emission scanning electron microscopy (SEM, FEI Nova Nano-SEM 450), transmission electron microscopy (TEM, Tecnai G2 20 U-Twin) and X-ray diffractometer (XRD, PANalytical B.V. X’Pert PRO). The redox properties of dye were examined by cyclic voltammetry at a scan rate of 50 mV s-1. The electrolyte solution was an acetonitrile solution containing 10 mM LiI, 5 mM I2, and 0.1 M LiClO4. Tests were conducted in a three-electrode one-compartment cell, where CE, Pt, and Ag/AgCl were taken as the working electrode, auxiliary electrode and reference electrode, respectively. The photovoltaic current density-voltage (J-V) characteristics of the prepared DSSCs were measured under illumination conditions (100 mW cm-2, AM 1.5), which was verified using Si photodiode, solar-simulator illumination (Newport, USA) on the active cell area of 0.15 cm2. The light-to-electric power conversion efficiency (PCE) and fill factor (FF) were calculated according to the equations [38]:

gongshi1

where Vmaxand Jmax are respectively the voltage and the current density under the maximum power output in the J-V curves, short-circuit current density (JSC) is the short-circuit current density (mA cm-2), open circuit voltage (Voc) is the open-circuit voltage (V), and Pin is the incident light power. EIS were examined at the open-circuit potential under the same illumination condition as the measurement of the J-V curves. The data were obtained by using Z-view software NOVA 1.7 to analyze the results from Auto-lab electrochemical work station (model AUT84315, the Netherlands) [39].

 

3 Results and Discussion

 

Figure 3 shows SEM and TEM images of RGO/MWCNTs/NiO nanocomposites. NiO nanoparticles were anchored on the surface of RGO sheets, which were separated by MWCNTs with less aggregation. From TEM images NiO nanoparticles with uniform size were distributed on the surface of the RGO and connected by MWCNTs to form continuous network (Figs. 3c-d). More active sites were available in this structure and electron transport properties as well as the cell performance are expected to be improved.

TGA measurements were carried out to determine the mass ratio of RGO/MWCNTs/NiO composites (Fig. 3f). The first step occurred around ~200°C, which was due to the removal of the physisorbed water. The large weight lost below ~400 °C was attributed to the removal of RGO from the composites. Between 400 and 710 °C, the graphitic carbon burnt off accounting for the second burn stage. Above 710 °C the TGA trace was stable with no further weight loss and only NiO remained.

a-d SEM and TEM images of RGO/MWCNTs/NiO composite. e SEM image of RGO/MWCNTs/NiO film on FTO glass substrate (cross section), showing the thickness of the film. f The TGA analysis of the RGO/MWCNTs/NiO.

a-d SEM and TEM images of RGO/MWCNTs/NiO composite. e SEM image of RGO/MWCNTs/NiO film on FTO glass substrate (cross section), showing the thickness of the film. f The TGA analysis of the RGO/MWCNTs/NiO.

XRD results of samples are shown in Fig. 4. For MWCNTs it shows a characteristic diffraction peak at 2θ of 26° (0 0 2), whereas, RGO/MWCNTs/NiO nanocomposite shows new diffraction peaks at 37.2° (1 1 1), 42.8° (2 0 0) and 62.4° (2 2 0) which ascribe to the crystal structure of NiO nanoparticles. However, no characteristic diffraction peak of GO observed in the RGO/MWCNTs/NiO nanocomposite indicated the successful reduction of GO to RGO.

XRD patterns of GO-, NiO-, MWCNTs- and RGO/MWCNTs/NiO-CE.

XRD patterns of GO-, NiO-, MWCNTs- and RGO/MWCNTs/NiO-CE.

To study the electrochemical behavior of composites, EIS was conducted under illumination of AM 1.5 G (100 mW cm-2) and a potential amplitude of 10 mV with frequencies of 10 mHz to 100 kHz to understand the effect of the electrocatalytic activities of different CE on the I3 reduction. The impedance spectra were illustrated as Nyquist plots and the equivalent circuit (Fig. 5). These works focus on the semicircle in the highest frequency region describing the electron transport at the CE/electrolyte interface. The charge transfer resistance (Rct) occurs at the contact interface between the electrode and the electrolyte [40]. Rs is the series resistance including the TCO’s sheet resistance and the cell’s contact resistances as itemized in Table 1. It can be seen that RGO/MWCNTs/NiO-CE has the smallest diameter of semicircle which was related to the less Rct (0.9 Ω), whereas, RGO and NiO CE have the largest Rct (2.3 and 4.7 Ω). When NiO nanoparticles were adopted with RGO, the Rct decreased to 1.3 Ω and the DSSC device with the RGO/MWCNTs/NiO-CE exhibits the smallest Rct, indicating the optimal compositions of RGO/NiO and MWCNTs. Since Rct of the CE affect the FF and PCE of DSSCs in a negative way [41-43], indicating the improved electrocatalytic activity for redox electrolyte and high electron-transfer kinetics, it will lead to a greater diffusion of the iodide/triiodide (I/I3) from the bulk solution to the electrode surface.

EIS analysis of RGO-, RGO/NiO- and RGO/MWCNTs/NiO-CE and equivalent circuit models. (Rs, Rct, Cdl and Zw are serial resistance, charge-transfer resistance of electrode, double layer capacitance and diffusion impedance, respectively).

EIS analysis of RGO-, RGO/NiO- and RGO/MWCNTs/NiO-CE and equivalent circuit models. (Rs, Rct, Cdl and Zw are serial resistance, charge-transfer resistance of electrode, double layer capacitance and diffusion impedance, respectively).

In order to understand further the improved DSSC devices with RGO/ MWCNTs/NiO-CE, we measured CV curves of the I/I3 redox couple on the RGO/MWCNTs/ NiO, RGO/NiO and RGO CE, respectively. From the results shown in Fig. 6 two sets of peaks were observed, which is due to the redox reaction of the I/I3 redox shuttle and another redox reaction of the I3/I2 redox couple [44]. As well known that two key parameters for estimating the catalytic activities of the CE are the peak-to-peak separation (EPP) and peak current density (IP) [45]. Therefore, the magnitude of IP is proportional to the ability of the CE to reduce the I3 species, while the magnitude of EPP is inversely proportional to the ability of the CE to reduce the I3 species. The CE in the DSSC is responsible for catalyzing the regeneration of I from I3 (I3 + 2e→3I) [46]. The RGO/MWCNTs/NiO electrode shows larger IP (2.88 mA) from the redox reaction of the I/I3 redox shuttle than the other two electrodes with the RGO and RGO/NiO electrodes showing IP of 1.18 and 2.4 mA, respectively (Table 2). In addition, Epp of RGO/MWCNTs/NiO-CE was lower than those of the RGO and RGO/NiO-CE. The RGO/MWCNTs/NiO-CE offers a high enough active area for faster and stronger redox reactions and a higher electrocatalytic effect for the reduction of I3 at the RGO/MWCNTs/NiO electrode.

The J-V curves of photovoltaic performance for DSSCs devices with NiO, RGO, RGO/NiO and RGO/MWCNTs/NiO different CE are shown in Fig. 2b. The devices performance parameters including Jsc, Voc, FF and PCE are summarized in Table 1. The PCE and FF were calculated according to the Eq. (1) and (2). The DSSCs devices with RGO/MWCNTs/NiO-CE reach the highest power conversion efficiency. The PCE significantly enhanced from 6.77 % for RGO-CE cell to 8.13 % for RGO/MWCNTs/NiO-CE one. This may be due to the increase of electrocatalytic activity toward I/I3 redox species and decrease of Rct. From CV curves in Fig. 6 and values of Jsc and PCE in Table 1, the DSSC devices with RGO/MWCNTs/NiO-CE exhibit the best photovoltaic performances, as well as better FF compared with other CEs. The enhanced Jsc maybe result from the enhanced diffusivity of I/I3redox species within CE [47]. However, the improved performance should attribute to the incorporation of MWCNTs into RGO/NiO which provides larger space allowing easy diffusion between the redox species.

Cyclic voltammograms for RGO, RGO/NiO and RGO/MWCNTs/NiO electrodes. The electrolyte was acetonitrile solution containing 10 mM LiI, 5 mM I2, and 0.1 M LiClO4. Pt electrode was used as auxiliary electrode and Ag/AgCl works as reference electrode. The scan rate is 50 mV s-1.

Cyclic voltammograms for RGO, RGO/NiO and RGO/MWCNTs/NiO electrodes. The electrolyte was acetonitrile solution containing 10 mM LiI, 5 mM I2, and 0.1 M LiClO4. Pt electrode was used as auxiliary electrode and Ag/AgCl works as reference electrode. The scan rate is 50 mV s-1.

RGO/MWCNTs/NiO films with different thicknesses of 3.6-12.7 μm were prepared to investigate the film thickness effect on performances of DSSCs (Table 3). As shown in Fig. 7, Voc and FF increase with the film thickness, whereas, Jsc is almost unchangeable. The highest photovoltaic efficiency of 8.13 % was observed in 12.7 μm DSSC (SEM image of the cross section shown in Fig. 3e). The RCT between electrolyte and RGO/MWCNTs/NiO increases with decreasing the film thickness, leading to the decrease of the FF and the PCE of DSSCs [48]. This is due to the insufficient catalytic activity for the reduction of triiodide of the thinner RGO/MWCNTs/NiO layers.

In addition, it should be mentioned that decrease of NiO particle size will enhance the conductivity of RGO/MWCNTs/NiO composites because of the synergistic effect between RGO and MWCNTs. CNTs not only prevent aggregation of RGO/NiO but improve the electron transport properties of RGO/MWCNTs/NiO composite owing to their special conductivity. Moreover, the restricting effect of RGO makes NiO nanoparticles provide more active sites. It is because the unique structure and properties, RGO/MWCNTs/NiO composite has enhanced electrochemical performance compared with that of RGO/NiO and MWCNTs/NiO ones.

The current-voltage curves of DSSCs using different thickness of RGO/MWCNTs/NiO film as counter electrodes.

The current-voltage curves of DSSCs using different thickness of RGO/MWCNTs/NiO film as counter electrodes.

 

4 Conclusion

 

In this paper, we fabricated RGO/MWCNTs/NiO composite and applied it in DSSC as a CE by blade doctor method. High PCE of 8.13 % was achieved in such DSSC, which is much higher than that of NiO (2.71 %), RGO (6.77 %) and RGO/NiO (7.63 %). Also, it was found that the RGO/MWCNTs/NiO CE has less charge-transfer resistance at the electrolyte/CE interface and higher catalytic activity for reduction of I3 to I. The improved performances maybe attribute to the enhanced electrode conductivity, the increased effective interfacial area between RGO/MWCNTs/NiO and electrolyte, as well as the contact area between RGO/NiO and other materials by MWCNTs.

 

Acknowledgements

 

This work was supported by the National Basic Research Program (2011CB933300) of China, the National Natural Science Foundation of China (11374110, 11204093, 51371085 and 11304106).

 

References

 

[1] B. O'Regan, M. Grätzel, Low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-740 (1991). doi:10.1038/353737a0

[2] M. Grätzel, Photoelectrochemical cells. Nature 414, 338-344 (2001). doi:10.1038/35104607

[3] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyr in sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629-634 (2011). doi:10.1126/science.1209688

[4] S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications 15(7), 603-612 (2007). doi:10.1002/pip.768

[5] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(24-28), L638-L640 (2006). doi:10.1143/JJAP.45.L638

[6] L. Han, A. Islam, Han Chen, C. Malapak, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 5, 6057-6060 (2012). doi:10.1039/c2ee03418b

[7] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, I-/I3- redox reaction behavior on poly (3, 4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 164(1-3), 153-157 (2004). doi:10.1016/j.jphotochem.2003.11.017

[8] B. Fan, X. Mei, K. Sun, J. Ouyang,Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl. Phys. Lett. 93, 143103 (2008). doi:10.1063/1.2996270

[9] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153(12), A2255-A2261 (2006). doi:10.1149/1.2358087

[10] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10(10), 1555-1558 (2008). doi:10.1016/j.elecom.2008.08.007

[11] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459-469 (2003). doi:10.1016/S0927-0248(03)00021-7

[12] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L.-Q Chen, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochem. Commun. 9(4), 596-598 (2007). doi:10.1016/j.elecom.2006.10.028

[13] E. Ramasamy, Nanocarbon counter electrode for dye sensitized solar cells. 90 (2007) (New York: AIP).

[14] P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2(12), 3572-3577 (2010). doi:10.1021/am100742s

[15] X. Mei, S. J. Cho, B. Fan, J, Ouyang, High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21(39), 395202 (2010). doi:10.1088/0957-4484/21/39/395202

[16] C-T Hsieh, B-H Yang, J-Y Lin, One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49(9), 3092-3097 (2011). doi:10.1016/j.carbon.2011.03.031

[17] G. Veerappan, K. Bojan and S-W Rhee, Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3(3), 857-862 (2011). doi:10.1021/am101204f

[18] L. Kavan, J. H. Yum, M. K. Nazeeruddin and M. Gratzel, Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells. ACS Nano 5(11), 9171-9178 (2011). doi:10.1021/nn203416d

[19] F. Gong, Z. Li, H. Wang and Z.S. Wang, Enhanced electrocatalytic perf- ormance of graphene via incorporationof SiO2 nanoparticles for dye-sensitized solar cells J. Mater. Chem. 22, 17321-17327 (2012). doi:10.1039/c2jm33483f

[20] A. Kaniyoor and S. Ramaprabhu, Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J. Appl. Phys. 109, 124308 (2011). doi:10.1063/1.3600231

[21] A. Kay and M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99-117 (1996). doi:10.1016/0927-0248(96)00063-3

[22] K. Suzuki, M. Yamaguchi, M. Kumagai and S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28-29 (2003). doi:10.1246/cl.2003.28

[23] W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 1(6), 1145-1149 (2009). doi:10.1021/am800249k

[24] C.S. Du, N. Pan, Supercapacitors using carbon nanotubes films by electropho- retic deposition. J. Power Sources 160(2), 1487 (2006). doi:10.1016/j.jpowsour.2006.02.092

[25] H.Y. Wang, F.M. Wang, Y.Y. Wang, C.C. Wan, B.J. Hwang, R. Santhanam, Electrochemical formation of Pt nanoparticles on multiwalled carbon nanotubes: useful for fabricating electrodes for use in dye-sensitized solar cells. J. Rick, J. Phys. Chem. C 115(16), 8439-8445 (2011). doi:10.1021/jp201220t

[26] H.J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synthetic Met. 161(13-14), 1284- 1288 (2011). doi:10.1016/j.synthmet.2011.04.024

[27] M. R. Al-bahrani, X. Xu, W. Ahmad, X.-L. Ren, J. Su, Z. Cheng, Y. Gao, Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode. Mater. Res. Bull. 59, 272-277 (2014). doi:10.1016/j.materresbull.2014.07.029

[28]L. Chang, C. Lee, K. Huang, Y. Wang, M. Yeh, J. Lin, K. Ho, Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. J. Mater. Chem. 22(7), 3185-3191 (2012). doi:10.1039/c2jm15614h

[29] I. Ahmad, J. E. McCarthy, M. Bari, Y. K. Gunko, Carbon nanomaterial based counter electrodes for dye sensitized solar cells. Solar Energy 102, 152-161 (2014). doi:10.1016/j.solener.2014.01.012

[30] H. Wang, W. Wei, Y. H. Hu, NiO as an Efficient counter electrode catalyst for dye-Sensitized solar cells. Top Catal. 57(6-9), 607-611 (2014). doi:10.1007/s11244-013-0218-8

[31] M.R. Al-bahrani, L. Liu, W. Ahmad, J. Tao, F. Tu, Z. Cheng, Y. Gao, NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl. Surf. Sci. 331, 333-338 (2015). doi:10.1016/j.apsusc.2015.01.015

[32] J. S. Jang, D. J. Ham, E. Ramasamy, J. Lee, J. S. Lee, Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46, 8600-8602 (2010). doi:10.1039/c0cc02247k

[33] M-H Yeh, L-Y Lin, L-Y Chang, Y-A Leu, W-Y Cheng, J-J Lin, K-C Ho,Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem. Phys. Chem. 15(6), 1175-1181 (2014). doi:10.1002/cphc.201301128

[34] E. Bi, H. Chen, X. Yang, W. Peng, M. Grätzel, L. Han, A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7, 2637-2641 (2014). doi:10.1039/C4EE01339E

[35]E. Bi, Y. Su, H. Chen, X. Yang, M. Yin, F. Ye, Z. Li, L. Han, A hybrid catalyst composed of reduced graphene oxide/Cu2S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Adv. 5, 9075-9078 (2015). doi:10.1039/C4RA14029J

[36] J. Zhu, J. Wang, F. Lv, S. Xiao, C. Nuckolls, H. Li, Synthesis and Self-Assembly of Photonic Materials from Nanocrystalline Titania Sheets. J. Am. Chem. Soc. 135(12), 4719-4721 (2013). doi:10.1021/ja401334j

[37] W. Sun, T. Peng, Y. Liu, W. Yu, K. Zhang, H. F. Mehnane, C. Bu, S. Guo, X.-Z. Zhao, Layer-by-Layer self-assembly of TiO2 hierarchical nanosheets with exposed {001} facets as an effective bifunctional layer for dye- sensitized solar cells. ACS Appl. Mater. Interfaces 6(12), 9144-9149 (2014). doi:10.1021/am501233q

[38] M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaic Res. Appl. 8(1), 171-185 (2000). doi:10.1002/(SICI)1099-159X(200001/02)8:13.0.CO;2-U

[39] J. H. Cheon, D.Y. Jung, S. K. Choi, K.-S. Ahn, D. K. Lee, J. H. Kim, Enhancement of light harvesting in dye-sensitized solar cells by using Först-type resonance energy transfer, Met. Mater. Int. 19(6), 1365-1368 (2013). doi:10.1007/s12540-013-0642-0

[40] F. F. Santiago, J. Bisquert, E. Palomares, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Phys. Chem. C 111(17), 6550-6560 (2007). Doi:10.1021/jp066178a

[41] S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S.Y. Lee, Y. Kang, W. Choi, Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21(19), 3729-3736 (2011). doi:10.1002/adfm.201101191

[42] D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 538-5388 (2011). doi:10.1016/j.carbon.2011.08.005

[43] L. Han, N. Koide, Y. Chiba, A. Isalam, R. Komiya, N. Fuke, A. Fukui, R. Ymanaka, Improvement of efficiency of dye sensitized solar cells by reduction of internal resistance. Appl. Phys. Lett. 86, 213501-3 (2005). doi:10.1063/1.1925773

[44] A. Ejigu, K. R. J. Lovelock, P. Licence, D. A. Walsh, The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis. Electrochimica Acta 56(28), 10306-10313 (2011). doi:10.1016/j.electacta.2011.03.139

[45] F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953-10958 (2012). doi:10.1021/ja303034w

[46] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203-6211 (2010). doi:10.1021/nn1016428

[47] Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919-19925 (2012). doi:10.1039/c2jm34425d

[48] L. Han, N. Koide, Y. Chiba, A. Islam and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cell by reducing internal resistance C. R. Chim. 9(5-6), 645-651 (2006). doi:10.1016/j.crci.2005.02.046

References

[1] B. O'Regan, M. Grätzel, Low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-740 (1991). doi:10.1038/353737a0

[2] M. Grätzel, Photoelectrochemical cells. Nature 414, 338-344 (2001). doi:10.1038/35104607

[3] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyr in sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629-634 (2011). doi:10.1126/science.1209688

[4] S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications 15(7), 603-612 (2007). doi:10.1002/pip.768

[5] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(24-28), L638-L640 (2006). doi:10.1143/JJAP.45.L638

[6] L. Han, A. Islam, Han Chen, C. Malapak, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 5, 6057-6060 (2012). doi:10.1039/c2ee03418b

[7] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, I-/I3- redox reaction behavior on poly (3, 4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 164(1-3), 153-157 (2004). doi:10.1016/j.jphotochem.2003.11.017

[8] B. Fan, X. Mei, K. Sun, J. Ouyang,Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl. Phys. Lett. 93, 143103 (2008). doi:10.1063/1.2996270

[9] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153(12), A2255-A2261 (2006). doi:10.1149/1.2358087

[10] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10(10), 1555-1558 (2008). doi:10.1016/j.elecom.2008.08.007

[11] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459-469 (2003). doi:10.1016/S0927-0248(03)00021-7

[12] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L.-Q Chen, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochem. Commun. 9(4), 596-598 (2007). doi:10.1016/j.elecom.2006.10.028

[13] E. Ramasamy, Nanocarbon counter electrode for dye sensitized solar cells. 90 (2007) (New York: AIP).

[14] P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2(12), 3572-3577 (2010). doi:10.1021/am100742s

[15] X. Mei, S. J. Cho, B. Fan, J, Ouyang, High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21(39), 395202 (2010). doi:10.1088/0957-4484/21/39/395202

[16] C-T Hsieh, B-H Yang, J-Y Lin, One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49(9), 3092-3097 (2011). doi:10.1016/j.carbon.2011.03.031

[17] G. Veerappan, K. Bojan and S-W Rhee, Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3(3), 857-862 (2011). doi:10.1021/am101204f

[18] L. Kavan, J. H. Yum, M. K. Nazeeruddin and M. Gratzel, Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells. ACS Nano 5(11), 9171-9178 (2011). doi:10.1021/nn203416d

[19] F. Gong, Z. Li, H. Wang and Z.S. Wang, Enhanced electrocatalytic perf- ormance of graphene via incorporationof SiO2 nanoparticles for dye-sensitized solar cells J. Mater. Chem. 22, 17321-17327 (2012). doi:10.1039/c2jm33483f

[20] A. Kaniyoor and S. Ramaprabhu, Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J. Appl. Phys. 109, 124308 (2011). doi:10.1063/1.3600231

[21] A. Kay and M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99-117 (1996). doi:10.1016/0927-0248(96)00063-3

[22] K. Suzuki, M. Yamaguchi, M. Kumagai and S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28-29 (2003). doi:10.1246/cl.2003.28

[23] W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 1(6), 1145-1149 (2009). doi:10.1021/am800249k

[24] C.S. Du, N. Pan, Supercapacitors using carbon nanotubes films by electropho- retic deposition. J. Power Sources 160(2), 1487 (2006). doi:10.1016/j.jpowsour.2006.02.092

[25] H.Y. Wang, F.M. Wang, Y.Y. Wang, C.C. Wan, B.J. Hwang, R. Santhanam, Electrochemical formation of Pt nanoparticles on multiwalled carbon nanotubes: useful for fabricating electrodes for use in dye-sensitized solar cells. J. Rick, J. Phys. Chem. C 115(16), 8439-8445 (2011). doi:10.1021/jp201220t

[26] H.J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synthetic Met. 161(13-14), 1284- 1288 (2011). doi:10.1016/j.synthmet.2011.04.024

[27] M. R. Al-bahrani, X. Xu, W. Ahmad, X.-L. Ren, J. Su, Z. Cheng, Y. Gao, Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode. Mater. Res. Bull. 59, 272-277 (2014). doi:10.1016/j.materresbull.2014.07.029

[28]L. Chang, C. Lee, K. Huang, Y. Wang, M. Yeh, J. Lin, K. Ho, Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. J. Mater. Chem. 22(7), 3185-3191 (2012). doi:10.1039/c2jm15614h

[29] I. Ahmad, J. E. McCarthy, M. Bari, Y. K. Gunko, Carbon nanomaterial based counter electrodes for dye sensitized solar cells. Solar Energy 102, 152-161 (2014). doi:10.1016/j.solener.2014.01.012

[30] H. Wang, W. Wei, Y. H. Hu, NiO as an Efficient counter electrode catalyst for dye-Sensitized solar cells. Top Catal. 57(6-9), 607-611 (2014). doi:10.1007/s11244-013-0218-8

[31] M.R. Al-bahrani, L. Liu, W. Ahmad, J. Tao, F. Tu, Z. Cheng, Y. Gao, NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl. Surf. Sci. 331, 333-338 (2015). doi:10.1016/j.apsusc.2015.01.015

[32] J. S. Jang, D. J. Ham, E. Ramasamy, J. Lee, J. S. Lee, Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46, 8600-8602 (2010). doi:10.1039/c0cc02247k

[33] M-H Yeh, L-Y Lin, L-Y Chang, Y-A Leu, W-Y Cheng, J-J Lin, K-C Ho,Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem. Phys. Chem. 15(6), 1175-1181 (2014). doi:10.1002/cphc.201301128

[34] E. Bi, H. Chen, X. Yang, W. Peng, M. Grätzel, L. Han, A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7, 2637-2641 (2014). doi:10.1039/C4EE01339E

[35]E. Bi, Y. Su, H. Chen, X. Yang, M. Yin, F. Ye, Z. Li, L. Han, A hybrid catalyst composed of reduced graphene oxide/Cu2S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Adv. 5, 9075-9078 (2015). doi:10.1039/C4RA14029J

[36] J. Zhu, J. Wang, F. Lv, S. Xiao, C. Nuckolls, H. Li, Synthesis and Self-Assembly of Photonic Materials from Nanocrystalline Titania Sheets. J. Am. Chem. Soc. 135(12), 4719-4721 (2013). doi:10.1021/ja401334j

[37] W. Sun, T. Peng, Y. Liu, W. Yu, K. Zhang, H. F. Mehnane, C. Bu, S. Guo, X.-Z. Zhao, Layer-by-Layer self-assembly of TiO2 hierarchical nanosheets with exposed {001} facets as an effective bifunctional layer for dye- sensitized solar cells. ACS Appl. Mater. Interfaces 6(12), 9144-9149 (2014). doi:10.1021/am501233q

[38] M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaic Res. Appl. 8(1), 171-185 (2000). doi:10.1002/(SICI)1099-159X(200001/02)8:13.0.CO;2-U

[39] J. H. Cheon, D.Y. Jung, S. K. Choi, K.-S. Ahn, D. K. Lee, J. H. Kim, Enhancement of light harvesting in dye-sensitized solar cells by using Först-type resonance energy transfer, Met. Mater. Int. 19(6), 1365-1368 (2013). doi:10.1007/s12540-013-0642-0

[40] F. F. Santiago, J. Bisquert, E. Palomares, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Phys. Chem. C 111(17), 6550-6560 (2007). Doi:10.1021/jp066178a

[41] S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S.Y. Lee, Y. Kang, W. Choi, Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21(19), 3729-3736 (2011). doi:10.1002/adfm.201101191

[42] D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 538-5388 (2011). doi:10.1016/j.carbon.2011.08.005

[43] L. Han, N. Koide, Y. Chiba, A. Isalam, R. Komiya, N. Fuke, A. Fukui, R. Ymanaka, Improvement of efficiency of dye sensitized solar cells by reduction of internal resistance. Appl. Phys. Lett. 86, 213501-3 (2005). doi:10.1063/1.1925773

[44] A. Ejigu, K. R. J. Lovelock, P. Licence, D. A. Walsh, The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis. Electrochimica Acta 56(28), 10306-10313 (2011). doi:10.1016/j.electacta.2011.03.139

[45] F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953-10958 (2012). doi:10.1021/ja303034w

[46] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203-6211 (2010). doi:10.1021/nn1016428

[47] Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919-19925 (2012). doi:10.1039/c2jm34425d

[48] L. Han, N. Koide, Y. Chiba, A. Islam and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cell by reducing internal resistance C. R. Chim. 9(5-6), 645-651 (2006). doi:10.1016/j.crci.2005.02.046

Citation Information

Majid Raissan Al-bahrani , Waqar Ahmad, Hadja Fatima Mehnane, Ying Chen, Ze Cheng, Yihua Gao, Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells. Nano-Micro Lett. 7(3), 298-306 (2015). http://dx.doi.org/10.1007/s40820-015-0043-7

History

Received: 6 February 2015 / Accepted: 7 April 2015

 


Additional Info

  • Type of Publishing: JOUR - Journal
  • Title:

    Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells

  • Author: Majid Raissan Al-bahrani, Waqar Ahmad, Hadja Fatima Mehnane, Ying Chen, Ze Cheng, Yihua Gao
  • Year: 2015
  • Volume: 7
  • Issue: 3
  • Journal Name: Nano-Micro Letters
  • Publisher: OPEN ACCESS HOUSE SCIENCE & TECHNOLOGY
  • ISSN: 2150-5551
  • URL: http://dx.doi.org/10.1007/s40820-015-0043-7
  • Abstract:

    We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide (RGO/MWCNTs/NiO) nanocomposite as the counter electrode (CE) in dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by blade doctor method. Power conversion efficiency (PCE) of 8.13 % was achieved for this DSSCs device, which is higher than that of DSSCs devices using NiO, RGO and RGO/NiO-CE (PCE = 2.71 %, PCE = 6.77 % and PCE = 7.63 %). Also, the fill factor (FF) of the DSSCs devices using the RGO/MWCNTs/NiO-CE was better than that of other CEs. The electron transfer measurement of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that RGO/MWCNTs/NiO film could provide fast electron-transfer between the CE and the electrolyte, and high electrocatalytic activity for the reduction of triiodide in a CE based on RGO/MWCNTs/NiO in a DSSC.

  • Publish Date: Wednesday, 01 July 2015
  • Start Page: 298
  • Endpage: 306
  • DOI: 10.1007/s40820-015-0043-7